Microtubules, signalling and abiotic stress.

نویسنده

  • Peter Nick
چکیده

Plant microtubules, in addition to their role in cell division and axial cell expansion, convey a sensory function that is relevant for the perception of mechanical membrane stress and its derivatives, such as osmotic or cold stress. During development, sensory microtubules participate in the mechanical integration of plant architecture, including the patterning of incipient organogenesis and the alignment with gravity-dependent load. The sensory function of microtubules depends on dynamic instability, and often involves a transient elimination of cortical microtubules followed by adaptive events accompanied by subsequent formation of stable microtubule bundles. It is proposed that microtubules, because of their relative rigidity in combination with their innate nonlinear dynamics, are pre-adapted for a function as mechanosensors and, in concert with the flexible actin filaments and the anisotropic cell wall, comprise a tensegral system that allows plant cells to sense geometry and to respond to fields of mechanical strains such that the load is minimized. Microtubules are proposed as elements of a sensory hub that decodes stress-related signal signatures, with phospholipase D as an important player.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: A synergistic signalling approach

The relationship between abiotic stress, nitric oxide (NO) and Hydrogen peroxide (H2O2) is a challenging one. It is now clear that H2O2 and NO function as signalling molecules in plants. A wide range of abiotic stresses results in H2O2 generation, from a variety of sources and it has many essential roles in plant metabolism but at the same time, accumulation related to virtually any environment...

متن کامل

The role of gibberellin signalling in plant responses to abiotic stress.

Plant hormones are small molecules that regulate plant growth and development, as well as responses to changing environmental conditions. By modifying the production, distribution or signal transduction of these hormones, plants are able to regulate and coordinate both growth and/or stress tolerance to promote survival or escape from environmental stress. A central role for the gibberellin (GA)...

متن کامل

Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.

The perception of abiotic stresses and signal transduction to switch on adaptive responses are critical steps in determining the survival and reproduction of plants exposed to adverse environments. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signalling pathways, som...

متن کامل

Molecular genetic perspectives on cross-talk and speci®city in abiotic stress signalling in plants

The perception of abiotic stresses and signal transduction to switch on adaptive responses are critical steps in determining the survival and reproduction of plants exposed to adverse environments. Plants have stress-speci®c adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signalling pathways, some...

متن کامل

Molecular Mechanisms in Plant Abiotic Stress Response

Improved crop varieties are needed to sustain the food supply, to fi ght climate changes, water scarcity, temperature increase and a high variability of rainfalls. Variability of drought and increase in soil salinity have negative effects on plant growth and abiotic stresses seriously threaten sustainable agricultural production. To overcome the infl uence of abiotic stresses, new tolerant plan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 2013